Pattern Recognition and Machine Learning (Libro en Inglés)

$ 5,308.00
ISBN: 9780387310732
por Springer
Biografía del autor ​Chris Bishop is a Microsoft Distinguished Scientist and the Laboratory Director at Microsoft Research Cambridge. He is also Professor of Computer Science at the University of Edinburgh, and a Fellow of Darwin College, Cambridge. In 2004, he was elected Fellow of the Royal Academy of Engineering, and in 2007 he was elected Fellow of the Royal Society of Edinburgh. Chris obtained a BA in Physics from Oxford, and a PhD in Theoretical Physics from the University of Edinburgh, with a thesis on quantum field theory. He then joined Culham Laboratory where he worked on the theory of magnetically confined plasmas as part of the European controlled fusion programme. This is the first text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. It presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It provides the first text to use graphical models to describe probability distributions when there are no other books that apply graphical models to machine learning. It is also the first four-color book on pattern recognition. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. From the reviews: This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong feature is the use of geometric illustration and intuition...This is an impressive and interesting book that might form the basis of several advanced statistics courses. It would be a good choice for a reading group. John Maindonald for the Journal of Statistical SoftwareIn this book, aimed at senior undergraduates or beginning graduate students, Bishop provides an authoritative presentation of many of the statistical techniques that have come to be considered part of 'pattern recognition' or 'machine learning'. ... This book will serve as an excellent reference. ... With its coherent viewpoint, accurate and extensive coverage, and generally good explanations, Bishop's book is a useful introduction ... and a valuable reference for the principle techniques used in these fields. (Radford M. Neal, Technometrics, Vol. 49 (3), August, 2007)This book appears in the Information Science and Statistics Series commissioned by the publishers. ... The book appears to have been designed for course teaching, but obviously contains material that readers interested in self-study can use. It is certainly structured for easy use. ... For course teachers there is ample backing which includes some 400 exercises. ... it does contain important material which can be easily followed without the reader being confined to a pre-determined course of study. (W. R. Howard, Kybernetes, Vol. 36 (2), 2007)Bishop (Microsoft Research, UK) has prepared a marvelous book that provides a comprehensive, 700-page introduction to the fields of pattern recognition and machine learning. Aimed at advanced undergraduates and first-year graduate students, as well as researchers and practitioners, the book assumes knowledge of multivariate calculus and linear algebra ... . Summing Up: Highly recommended. Upper-division undergraduates through professionals. (C. Tappert, CHOICE, Vol. 44 (9), May, 2007)The book is structured into 14 main parts and 5 appendices. ... The book is aimed at PhD students, researchers and practitioners. It is well-suited for courses on machine learning, statistics, computer science, signal

  • Libro Impreso

  • Edición: 1

  • Editorial: Springer

  • Autor: Bishop, Professor of Neural Computing Christopher M