Quantitative Social Science (Libro en Inglés)

$ 2,654.00
ISBN: 9780691175461
por Vintage
The author has masterfully balanced careful explanations of the quantitative theory with the practical computer implementation of the methods applied to real world data sets. . . . That Quantitative Social Science: An Introduction is carefully written, detailed, and interactive makes it useful either as a textbook for a lecture course or for self-study. . . . I highly recommend the book to anyone looking for an introduction to data science.---Jason M. Graham, Mathematical Association of America Reviews An introductory textbook on data analysis and statistics written especially for students in the social sciences and allied fieldsQuantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it--or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science. Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results--it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior. Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors.Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data scienceProvides hands-on instruction using R programming, not paper-and-pencil statisticsIncludes more than forty data sets from actual research for students to test their skills onCovers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical toolsFeatures a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercisesOffers a solid foundation for further studyComes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides Contraportada "Kosuke Imai has produced a superb hands-on introduction to modern quantitative methods in the social sciences. Placing practical data analysis front and center, this book is bound to become a standard reference in the field of quantitative social science and an indispensable resource for students and practitioners alike."--Alberto Abadie, Massachusetts Institute of Technology"The search for a good undergraduate social science textbook is eternal, but with Imai's book, the search may well be over. It covers a host of cutting-edge issues in quantitative analysis, from causality and inference to its use of R so that students can advance in both their research and work lives. Imai plots a new way for us to think about how to teach undergraduate methods."--Nathaniel Beck, New York University"Kosuke Imai's book takes a very novel and interesting approach to a first quantitative methods course for the social sciences. Focusing on interesting questions from the beginning, he starts by introducing the potential outcome approach to causality, and proceeds to present the reader with a wide range of methods for an admirably broad range of settings, including textual, network, and spatial data. Integrated with the methodological discussions are examples with detailed R code. Readers who work through this book will be well equipped to use modern methods for dat

  • Libro Impreso

  • Edición:

  • Editorial: Vintage

  • Autor: Imai, Kosuke